NCMA Concrete Block Design Competition + Studio Project
A building is encountered, not only viewed. Therefore, the bodily encounter with an architectural structure and space is an inseparable aspect of the experience. By creating a narrative on the act of bathing, Soak explores the act of becoming aware of the body. Through the use of the aesthetic and ecological potentials of the site to create an oasis of this process of self-actualization, the resulting experience becomes a narrative plastic to the purpose of perception and the subject. With the goal and intention of allowing the people who populate the space to forge connections to the natural world and discover moments of inspiration, split spaces with varying gaps allow nature and human conditions to play an essential role. This environment becomes a sequence with variability; from the initial approach of the building down until one’s ascent, the building and material itself is approached, touched, confronted, entered, and related to one’s body—the extruding walls of concrete invite.
EDUCATIONAL AIMS

The spring semester of the undergraduate Bachelor of Architecture program at Carnegie Mellon University has historically focused on architecture’s material dimension. In this semester, design studio projects are utilized for the exploration of materiality in relationship to a diverse set of topics. The NCMA design competition fits well within the pedagogical focus of the semester and serves as a compelling introduction to a material as well as a construction system.

The short-term objective of the NCMA concrete masonry competition at Carnegie Mellon University, sponsored by the National Concrete Masonry Association (NCMA) Education and Research Foundation is to provide hands-on experience in concrete masonry design using traditional concrete masonry units. This is explored at the scale of the building and the scale of the individual unit. The long-term objective is to inspire interest in concrete masonry among undergraduate students in architecture.
The initial phase of the NCMA project was structured as an intense design charrette. The two week competition commenced on January 16, with an introductory lecture by Professor Ficca on the concrete masonry construction and the specifics of the building program and site.

The project, a bath-house located in the white mountains of New Hampshire required a primary construction system of concrete masonry construction for the creation of spaces for a warm bath, cold bath, meditation room and changing facilities. The students were encouraged to explore the spatial, visual, technical and structural potential of this system.

Students were instructed to team up with one or two partners for the duration of the competition. A set of presentation requirements were outlined at the commencement of the competition which included two and three dimensional forms of representation.

Further information on the project requirements can be found in the project brief on this page.

STUDIO COMPETITION: PROJECT 1A

Project Brief:

Concrete masonry units (CMU) are one of the most conventional and utilitarian building components employed in construction practices today. Their wide use across a broad range of building scales, from simple family residences to institutional and educational projects speaks to the fundamental attributes of concrete masonry units such as strength, durability, relative low cost and ease of assembly. CMU is a material hidden away in suburbian basement walls and embellished in landscaped contemporary architecture. Developed as a mass-produced alternative to quarried and dressed stone, it offered material standardization free of the limits of indigenous stone availability and craft practices. At the beginning of the 20th century, Sears Roebuck and Montgomery Ward marketed small-scale machines for the average man that allowed one to construct the system of aggregation in which the resolution of the system is tied to the size of the unit. While the concrete masonry and may reference traditions of solid stone construction and speak to an ethic of truthful construction, most contemporary "solid" construction relies upon a precise sectional arrangement of units, insulation, thermal barriers and structural reinforcement. In the case of double-wythe construction, the image of a pure, solid wall is in actuality the product of careful concealment and slight of hand. This is not a compromise of constructional purity or architectural essence, but rather a manifestation of the complexities of the wall, born out of the requirements of thermal and structural performance.

Materials are not mapped onto an architectural proposition and their selection is not the last decision in the design process. Rather, they inform design. Through a deep understanding of their properties and performance as well as the means in which they are assembled and configured one can elevate their use beyond the everyday. Beginning a design process with a material assignment and system of construction affords one the opportunity to explore the potential of the system and test its limits. This method prompts the designer to explore the relationships between architectural figure and unit configuration as well as the establishment of system-wide rules. A design process that explores concrete masonry units demands a thorough investigation of its essential manifestation, the wall. From this basic architectural element one is able to explore a host of issues such as:

- How walls relate, collectively
- How walls begin and end
- How walls meet the ground and the sky
- How walls turn a corner
- How walls hold back the earth
- How a wall performs structurally, thermally, acoustically
- How an opening is made through a wall
- How one passes through a wall

Project Brief:

The National Concrete Masonry Association has agreed to support this studio in the form of a design competition that explores thoughtful utilization of standardized concrete masonry units. The competition will serve as the initial phase of a more comprehensive project and will provide an intensive forum to explore a selection of precedent architectural issues related to material presence, material performance and the inherent tactile potentials.

Working in teams of two, you are asked to develop an architectural proposal for a therapeutic bathhouse constructed primarily from concrete masonry units and located near the Appalachian Trail in Crawford Notch New Hampshire. The baths will complement the existing, four-seasons, Appalachian Mountain Club Highland Center Lodge found immediately north of the site, across route 302. This facility will supplement the various activities found throughout the region, support the longstanding culture of outdoor activities established in this historically significant section of the White Mountains.

At the end of the 19th century, the Presidential Mountain range of New Hampshire provided a retreat from the hot and polluted summers found in Boston and New York and transformed Crawford Notch from a north-south trading route to a tourists destination and respite from city life. The expansive landscape and rugged terrain was captured in the paintings of Thomas Cole of the Hudson River School and continues to draw artists, naturalists and adventure seekers. The rail line that runs adjacent to the site, often along the Saco River as it heads south, provides a convenient means of access through the Crawford Notch on the New York Central railroad. The railroad runs adjacent to the site, often along the Saco River as it heads south, provides a convenient means of access through the Crawford Notch on the New York Central railroad. The railroad runs adjacent to the site, often along the Saco River as it heads south, provides a convenient means of access through the Crawford Notch on the New York Central railroad.

The bathhouse must be an all season structure. It’s siting should take into account the potential for significant snow-depth.

- The baths will offer physical and mental relaxation to visitors, while providing opportunities for individuals and groups to indulge in the therapeutic properties of water. The project involves both distinct therapeutic pools, the caldarium hot pool and frigidarium (cold pool) and is positioned as a year-round resource for hikers, skiers and eco-tourists. The bathhouse’s associated spaces will operate from 6AM – 11PM and will complement existing activities found in the region.

- The site is located between the northwestern shores of Saco Lake and route 302 in Carroll, New Hampshire and lies within the Presidential Range of the White Mountains. It offers southern views across Saco Lake through the picturesque Crawford Notch. The topography of the site slopes gently toward the east for a few hundred feet and then transitions to steeper terrain along the Appalachian Trail. Saco Lake is currently dammed and feeds the Saco River to the south. It is approximately 9 acres in size, has an average depth of 7 feet and sits at an elevation of 1590 feet. The Saco Lake trail runs along the entire shoreline to create a loop of approximately 1 mile. The trail remains close to the water line, avoiding by no more than 6 feet in elevation with the exception of Willow Overlook that rises 30 feet above the water line to offer commanding views of the content. The ecosystem is diverse and rich, featuring spruce and hemlock trees along the south eastern shore and birch and chest nuts along the northern and eastern shores. Local wildlife includes moose, beaver and porcupine.

- The site to access the baths will be across the lakeside trail and from the Highland Center Lodge across route 302.

- Project Brief:

 - The bathhouse will be located on the eastern vehicle parking area at the Highland Center Lodge. It is assumed approach will be in the form of an accessible path. Passage along the trail must be preserved independent of the entrance to the bathhouse. Given the sensitive ecological conditions, the project must thoughtfully consider the impact of the chosen site upon the larger ecosystem.

- Considerations and Constraints:

 - The primary method of wall construction shall be concrete masonry units (see handout for unit size). Roofs and floors can be constructed of alternate materials.
 - The caldarium pool "tub" shall be constructed of site cast concrete and contain a volume of water of the following dimensions: 64 inches x 144 inches x 40 inches. The caldarium pool is kept at a temperature of 90 degrees Fahrenheit and must be fully within the thermal envelope.
 - The caldarium pool "tub" shall be constructed of site cast concrete and contain a volume of water of the following dimensions: 144 inches x 240 inches x 96 inches. The caldarium pool is kept at a temperature of 90 degrees Fahrenheit. Up to 50% of the caldarium pool may be located outside of the thermal envelope.
 - The bathhouse should be capable of comfortably accommodating up to 20 people at any given time.
 - The men’s and women’s changing rooms must be thermally conditioned and include storage for clothing, benches for changing and 2 private toilet stalls and showers in each of changing rooms.
 - The bathhouse must be an all season structure. It’s sitting should take into account the potential for significant snow-depth.
 - The entry and occupied spaces must be ADA accessible (see handout for ADA regulations).
 - The entry must be secure to prevent vandalism.
 - In addition to the pools and changing rooms, a meditation space of 150 sq. ft. should be provided.
 - The site requires a fill / pump room of 100 sq. ft.

- Presentation requirements:

 - Submissions will be in the form of two 24 inch wide x 36 inch tall posters, mounted to 1/4 inch white foam core to form rigid boards. All presentation requirements indicated below must be on these boards.
 - 1/2 inch scale site plan, including topography contours
 - 1/4 inch scale plans, including all concrete masonry units
 - 1/4 inch scale section, including all concrete masonry units
 - 1/4 inch scale model, soundly attached to aforementioned boards
 - Explanatory representation(s)
 - Text as deemed necessary

- Schedule:

 - Jan 18 Competition distributed
 - Jan 19 Studio reading discussion
 - Jan 23 Concrete Masonry Unit factory tour
 - Jan 25 Group meetings with studio instructor
 - Jan 29 Competition entries hang up by 1:30pm

- Awards:

 - 1st place $1000, a trophy, plus up to $1000 in travel expenses to present at the NCMA Annual Conference.
 - 2nd place $500 and a plaque
 - 3rd place $250 and a plaque

Best Concrete Masonry Hardscape Design, $1000 and a plaque
Forty two students and five faculty traveled to R.I. Lampus’ concrete masonry production facility and showroom in Aliquippa Pennsylvania on January 23, 2013. Don Lampus Sr., Don Lampus Jr. and multiple members of the R.I. Lampus team interacted with the Carnegie Mellon group for nearly three hours through product presentations, assembly instructions and production facility tours.

The timing of this trip, mid-way through the initial phase of the competition, provided students with detailed technical information as well as hands-on interaction with concrete masonry units. Students learned about various methods of assembly through detailed discussions of wall mock-ups. The overview of the manufacturing processes was invaluable as it offered students an opportunity to understand the creation of a ubiquitous building product from start to finish.
A building is not only viewed, it is encountered. Therefore, the bodily encounter with an architectural structure and space is an inseparable aspect of the experience.

By creating a narrative on the act of bathing, Soak explores the act of becoming aware of the body. Through the use of the aesthetic and ecological potentials of the site to create an oasis of this process of self-actualization, the resulting experience becomes a narrative plastic to the purpose of perception and the subject. With the goal and intention of allowing the people who populate the space to forge connections to the natural world and discover moments of inspiration, split spaces with varying gaps allow nature and human conditions to play an essential role. This environment becomes a sequence with variability; from the initial approach of the building down until one’s ascent, the building and material itself is approached, touched, confronted, entered, and related to one’s body—the extruding walls of concrete invite.
A retreat for the meanderers of Crawford Notch, the Saco Lake Bath-house unfolds a spatial sequence in time that strategically releases physical and emotional tensions. The frigidarium at 50 degrees Fahrenheit is presented between two 18 foot tall concrete block walls. The space is unfamiliar and slightly uncomfortable like the water temperature in the pool. Since our bodies store memories and many emotions within our tissues, the physical discomfort may cause occupants to feel emotional discomfort. It is important to allow these emotions to surface so that recovery is thorough. Moving into the caldarium and then the meditation room, more familiar spaces, completes the healing process. The building as a whole is situated on a sloped site. Visitors enter the building through a deep path that is scarred out of the earth. However, as they proceed through the building, the earth heals under the building so that the building mimics the healing taking place inside.
We are inhabitants of valleys - channels and pathways between ridges. Enveloped on either side in mass, our movements slice through rock and dense forest, forming channels and letting in light from above. It is by living in the bowl of the valley, at the base of the mountain, that we begin to pace ourselves and encompass it as it encompasses us.

Viewing building and material unit - the standard “stretcher” concrete masonry unit - as evidence and content, the project reveals channels and dichotomies of path and place, in a play and questioning between natural and man made artifact. Moving through the main mass, the concrete rock, the building, are the light volumes of the calderium, meditation space, and fridgedarium. Positioning themselves relative to the site conditions and to each other, the volumes speak to a height and rotational relation between the body and the Earth. The building itself acts as a mediator. Beyond themselves, both the lake and structure are apertures for each other.

The most prominent way in which we have used - and here, altered - the concrete masonry unit block is by slicing it to reveal its inner channels and ridges. With three base cuts, the revealed textured modules can combine to achieve highly variable textures and surfaces, which evoke the sense of flow and movement. (It can also be used as a device to control rainwater and solar exposure, letting in light and building shadow.)
A distinguished jury of local architects, professors and concrete masonry industry representatives met on January 28, 2013 to review, discuss and decide upon the winners of the Saco Lake Bath-house projects. As per NCMA competition guidelines, judging was both quantitative and qualitative, and assigned separate point totals to each student project in the categories of aesthetic concept, innovative use of concrete masonry, functional use of concrete masonry, constructibility and concrete masonry hard-scape design.

The jury was impressed with the quality of the second year studio work. The graphic representation of the aesthetic characteristics of the work was high and the efforts to resolve building design within the construction system of concrete masonry were commendable. The jury remarked the technical resolution of masonry construction was developed to varying degrees across the proposals and was enthused by the wide range of proposals. While some of the proposed implementations of concrete masonry units contradicted conventions, the jury felt the overall level of the work was commendable for students in the early stages of their education.

JURY MEMBERS

Mike Gwin, AIA, Partner of RD Collaborative
Robert Welling, R.I. Lampus (NCMA Rep)
Madeline Gannon, Instructor, CMU
Jeremy Ficca, RA, Assoc. Prof., CMU
Joshua Bard, Asst. Prof., CMU
Jonathan Golli, AIA, Adjunct Prof., CMU
Jennifer Lucchino, RA, Adjunct Prof., CMU
Nick Ladas, Adjunct Prof., CMU
STUDIO PROJECT BRIEF: PROJECT 1B

Upon completion of the initial design competition, students were asked to write a brief reflection of their competition project and design process. These were shared with their classmates and facilitated the reformation of design teams which now aligned students of shared topics and interests.

The second phase of the project ran for a duration of five weeks and while based on the same initial program and site, added requirements for the development of a custom cast module as well as additional programmatic elements.

Students were introduced to digital fabrication processes, specifically computer numerically controlled routing for the development of molds for custom components. Students were introduced to digital fabrication processes, specifically computer numerically controlled routing for the development of molds for custom components.

The longer duration of this stage of the project provided faculty with ample opportunities to interact with students as they developed their projects. Technical limitations and opportunities associated with concrete masonry construction were discussed through case study presentations in the form of lectures as well as numerous design critiques of the student work.

Further information on the project requirements can be found in the project brief on page 2.

STUDIO ARCH 48-205 - 2013

[material GESTALT]

"Architecture itself began when the walls parted and the columns became, admitting light and creating a system of support at the same time" – Louis Kahn

Project Position:

In an effort to develop technically sophisticated and refined architectural design strategies, we will distill architecture to three constituent parts:

1. [plinth]
2. [wall]
3. [canopy]

Through these taxonomies, we will explore specific architectural situations in relationship to [1] architecture’s material presence and performative; [2] architecture’s social and experiential component; [3] architecture’s topographical relationship. We will explore plinth, canopy and wall simultaneously as discrete parts, with explicit performative capacities as well as a composite that serves a clear architectural agenda. These will be developed through a materially sensitive form-finding process in which material properties and their associated tectonic potential in form intent. We will explore both the performative and potential of architectural space as a complimentary endeavor that converges through a rigorous exploration of the material reality of architecture. Particular attention will be directed toward the spatial, structural, and phenomenological performance of materials and the establishment of a working method that moves beyond speculation to analysis. This method will be rigorously explored through an iterative process of prototyping where physical models, mockups, and tests inform design intent. Performative parameters can focus on, but are not limited to design objectives such as structural capacity, natural and artificial light flow, thermal mass, water collection and the interaction of the body with the natural environment.

We will also design and prototype a unique, cast cementitious component or family of components that utilize different methods of digital design and fabrication. The component should be explored in relationship to plinth, wall, or canopy and should be understood as a means of further the ends at play in that aspect of your project. While initial development of the project will primarily focus on the elements of plinth, wall and canopy, one should understand the component as an integral part of the project. The fabrication of the component will utilize methods of one routing for the production of modes and models of reduction and refinement. The relationships between material and fabrication processes and tectonics must be carefully considered and rigorously explored through an iterative process of prototyping where physical models, mockups, and tests inform design intent. Performative parameters can focus on, but are not limited to design objectives such as structural capacity, natural and artificial light flow, thermal mass, water collection and the interaction of the body with the natural environment.

Project Events:

The activities associated with the building will be the same as in the previous stage of the project with one addition, a means to gain access to a canoe in Saco Lake.

Project Site:

We will work in same site context as Project 1a, adjacent to Saco Lake.

Considerations and Constraints:

- While concrete masonry units shall serve as a primary means of wall construction, one should explore the opportunities afforded through secondary materials and constructive systems.
- The frigidarium pool "tub" shall be constructed of site cast concrete and contain a volume of water of the following dimensions: 64 inches x 144 inches x 48 inches. The caldarium pool is kept at a temperature of 60 degrees Fahrenheit and must be fully within the thermal envelope.
- The caldarium pool "tub" shall be constructed of site cast concrete and contain a volume of water of the following dimensions: 144 inches x 288 inches x 56 inches. The caldarium pool is kept at a temperature of 105 degrees Fahrenheit.
- The bathhouse must facilitate access to a single 2-person canoe in Saco Lake. One should assume the opportunity afforded through secondary materials and constructive systems.
- The men’s and women’s changing rooms must be thermally conditioned and include storage for clothing, benches for changing and 2 private toilet stalls and showers in each of the changing rooms.
- The bathhouse must be an all season structure. Its sitting should take into account the potential for significant snow-depth.
- The entry and occupied spaces must be ADA accessible [see handout for ADA regulations].
- The entry must be accessible to prevent vandalism.
- In addition to the pools and changing rooms, a recreation space of 100 sq. ft. should be provided.
- The rooms require a filter / pump room of 100 sq. ft.
- The conditioned spaces require a mechanical room of 100 sq. ft.

Reading 1 – Elements of Architecture

Peter Zumthor

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Architecture, Materials Processes and Structures</td>
<td>Andrea Deplazes (ed.)</td>
<td>153-170</td>
</tr>
<tr>
<td>Thinking Architecture</td>
<td>Peter Zumthor</td>
<td>9-26</td>
</tr>
</tbody>
</table>

Materials:

The planks of materials should be restrained with, one acting as a primary material. Available materials are: Concrete Masonry Units, Concrete / Stone, Wood, Metal, Glass.

Process:

Methods for design, evaluation and communication will principally be models.

Schedule:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 1</td>
<td>Project distributed</td>
</tr>
<tr>
<td>Feb 4</td>
<td>Pinup of clear design strategies for each of the following plinth, wall, and canopy.</td>
</tr>
<tr>
<td>Feb 11</td>
<td>Site plan clearly showing location of schemes and relationships to context</td>
</tr>
<tr>
<td>Feb 18</td>
<td>Project review, including the following: 1/8” model, 1/4” shaded horizontal section, including deck (not perspective)</td>
</tr>
<tr>
<td>March 6</td>
<td>Final Project Review</td>
</tr>
</tbody>
</table>

Deliverables:

- 1/8” scale model
- 1/4” shaded vertical section
- This is your opportunity to document the play of light within your project.
- 1/4” shaded horizontal section
- Influence of material characteristics upon tectonics must be evident. Not just texture maps!
- 1/32” shaded horizontal section
- Influence of material characteristics upon tectonics must be evident. Not just texture maps!
- Collages / renderings
- Component prototypes
STATEMENT

This next rendition of the Saco Lake Bathhouse involves the use of a component, a key element that will change how one experiences the bathhouse. To begin, this design revolved around a series of axes, that would lead the bather to the final part of this bathhouse, the dock and launching of the canoe. The axis first pass the changing rooms, leading the bathers eyes and path down the ramp that soon turns into the axis that passes the cold and hot pool. The meditation spaces soon become apart of these axis, ending with the dock. The component also focuses on delivering various views for the bather as they move throughout the bathhouse. There are various components with angled views that allow and block views into the baths and outside. The relationship between the pools and ramp to the canoe for instance is one where the bathers can only see the feet of the bathers on their way to canoe, and vice versa.
STATEMENT

Our second phase of the bathhouse design was about the bodily experience of the space and the environment. The building became embedded into the earth as a seamless object. As one made their way through the building, through the deliberate program we planned for the visitors, one would get a sense of where they are in the realm of their surroundings. Close attention was paid to the tectonic features of the structure, to create a relationship to the occupant and the material, the textured components helping one identify the significance of the earth, air, and water that engulfs them.
STATEMENT

After the competition, we returned in groups of two or three to conceive of a new bathhouse on Saco Lake in the picturesque Crawford Notch region of New Hampshire. This area attracts many nature-lovers, and so the interaction with nature was to be an important part of this project. We were asked to study plinth, wall, and canopy as discrete building elements, and how they might be combined for greater interaction. The primary spaces of the program were warm and cold pools of a defined size, changing rooms, a meditation space, and a dock for canoes. Our design focused on one’s interaction with nature, centering on an idealized existing tree. Heavy timber frame construction was used throughout the building to bring warmth and natural elements into the individual rooms, as well as referencing the historic, vernacular architecture of the region. Clerestory windows were used to provide views to the natural forest while retaining a sense of place and protection within the building. Water was brought from the lake into the central courtyard so that one could access the canoes without interrupting the serene experience of those bathing within. The changing rooms open onto an interstitial space which leads toward the cantilevered meditation space, caldarium, and frigidarium, and which is also where the component is introduced.
STATEMENT

This project also involved the introduction of a building component system. It was required that the individual pieces be cast of concrete from molds made using the CNC router, but the system could have any purpose within the plinth, walls, or canopy of our building. Our component system relied on nine specific pieces that are tessellated to form a non-repeating single or double layered wall. The angles of extrusion of the individual pieces serve two goals: the first, allowing for the direction or diffusion of light coming from the exterior facades, and the second, directing views from within the pool rooms toward the courtyard and tree. The component screens provide varying levels of permeability within the interstitial and pool spaces to direct one’s procession and experience throughout the bathhouse.
1 April 2013

Dennis Graber and the National Concrete Masonry Association,

It was unexpected but of great pleasure when our group was announced to be second place recipients for the cast concrete component aspect of our studio project. For many of us, this was the first time we had won anything during our (now two year) studies at Carnegie Mellon University B.Arch Program and therefore, will be an occasion that we will never forget.

We understand the organization of the competition process would be impossible without people such as you and we appreciate the time and effort you and the NCMA have put in to not only understanding but also responding to our projects. In turn, I believe many of us have developed a deeper appreciating for these materials, which we have been working with during the last half of the semester.

We hope that you will continue to support us both as students and future builders/colleagues alike. You and the NCMA have given us the opportunity to develop, be inspired, and progress in our designs, ideas, and material knowledge, which we will always be immensely grateful for.

Sincerely,

[Signatures]

Richard Chou Eva Peng Erica Chan

April 3, 2013

Dear Mr. Graber,

Thank you for supporting our National Concrete Masonry Association competition. I think opportunities like this are great for students to familiarize themselves with a material and understand its benefits. This was personally the case for me. I knew little about concrete masonry before the competition and have gained a new found appreciation for the material as a component. As an architecture student it was great to experience for the first time design through a module and using the concrete masonry unit characteristics as a way of generating design. It was truly a valuable and worthwhile process.

Sincerely,

Laura Gonzalez
Dear Dennis Graber,

Thank you for the valuable experience of taking part in the 2013 National Concrete Masonry Association Competition. Thinking and working directly with a designated material and in an architectural and explorative manner was incredibly rewarding. The excitement and overall experience of being in this competition is something that will affect and push many of my future endeavors and architectural and design driven competition entries. Thank you again for the competition award and for this opportunity.

Sincerely,
Loah Wulfman

April 9, 2013

Dear Dennis Graber,

I would like to sincerely thank you for rewarding my group and I with the National Concrete Masonry Association Studio Project Award. It is so encouraging to be recognized for hard work, and truly iterates the reasons for putting great effort into my work, being creative, and not afraid to fail. It is exciting to know that the National Concrete Masonry Association has faith in our Architecture students, and that they care about our academics and our futures.

Thank you again for the reward and scholarship,

Sincerely,

Colleen Clifford
Dear Dennis Graber,

I would like to thank you for rewarding myself and my group with the National Concrete Masonry Association. I have never received such a recognition before and it pushes me to work even harder in the upcoming projects. It’s encouraging to see outside organizations having a part of Carnegie melons architecture program and allows us to have some real world context which we usually lack. Thanks so much again for having faith in myself, my group, and this program.

Sincerely,

Jeremy Lu

April 8, 2013

Dear Mr. Dennis Graber,

On behalf of my classmates, and myself I would like to extend sincere thanks to you and the National Concrete Masonry Association for sponsoring such a thrilling design competition. Rethinking the use of the CMU block was a particularly interesting assignment for me as it showed me that creative designs can be derived through thoughtful use of the material at hand, however simple that material may be. I thoroughly enjoyed the design process and would like to thank you for the two cash awards that I received (totaling $225).

Sincerely,

Gabriel Jose Vidal-Hallett
April 8, 2013

Dear Mr. Dennis Graber,

On behalf of the second-year class of Carnegie Mellon University's School of Architecture, I would like to thank you and the National Concrete Masonry Association for sponsoring our Saco Lake Bath House design contest. This was an incredible opportunity for us all to produce work for a competition setting, an experience that cannot be covered by studio projects alone.

I would also like to thank you for the award of $100, which I have been granted! It is extremely exciting to be participating and winning competitions at this point as I prepare for a career in architecture; it serves as encouragement and provides inspiration for the path ahead.

Thank you!

Sincerely,

Travis Rozich

April 8, 2013

Dear Dennis Graber,

We would like to thank you for providing us with the opportunity to participate in our first architecture design competition. The competitive atmosphere really made for a truly enriching and thrilling experience. My partner and I would like to sincerely thank you and the NCMA for this opportunity.

Ayanti Dabholkar and Gloriana Gonzalez
Dear Denis Graber,

Thank you for providing this great opportunity of competing in a competition sponsored by the National Concrete and Masonry Association. I find true value in the experience of competing in a school wide competition just as second years and it is an experience that I believe should be continued on at Carnegie Mellon University. I gained new found motivation and enlightenment on design and architecture and I’m excited to see what the future and bring.

Sincerely,

Clara Lee